4.8 Article

Auxin-induced, SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins for degradation

期刊

PLANT JOURNAL
卷 59, 期 1, 页码 100-109

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-313X.2009.03854.x

关键词

auxin response; transcriptional repressor; F-box protein; E3 ubiquitin ligase; 26S proteasome; protoplast

资金

  1. Netherlands Organisation for Scientific Research (NWO)

向作者/读者索取更多资源

P>The plant hormone auxin (indole-3-acetic acid or IAA) regulates plant development by inducing rapid cellular responses and changes in gene expression. Auxin promotes the degradation of Aux/IAA transcriptional repressors, thereby allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes. Auxin enhances the binding of Aux/IAA proteins to the receptor TIR1, which is an F-box protein that is part of the E3 ubiquitin ligase complex SCFTIR1. Binding of Aux/IAA proteins leads to degradation via the 26S proteasome, but evidence for SCFTIR1-mediated poly-ubiquitination of Aux/IAA proteins is lacking. Here we used an Arabidopsis cell suspension-based protoplast system to find evidence for SCFTIR1-mediated ubiquitination of the Aux/IAA proteins SHY2/IAA3 and BDL/IAA12. Each of these proteins showed a distinct abundance and repressor activity when expressed in this cell system. Moreover, the amount of endogenous TIR1 protein appeared to be rate-limiting for a proper auxin response measured by the co-transfected DR5::GUS reporter construct. Co-transfection with 35S::TIR1 led to auxin-dependent degradation, and excess of 35S::TIR1 even led to degradation of Aux/IAAs in the absence of auxin treatment. Expression of the mutant tir1-1 protein or the related F-box protein COI1, which is involved in jasmonate signaling, had no effect on Aux/IAA degradation. Our results show that SHY2/IAA3 and BDL/IAA12 are poly-ubiquitinated and degraded in response to increased auxin or TIR1 levels. In conclusion, our data provide experimental support for the model that SCFTIR1-dependent poly-ubiquitination of Aux/IAA proteins marks these proteins for degradation by the 26S proteasome, leading to activation of auxin-responsive gene expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据