4.8 Article

An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress

期刊

PLANT JOURNAL
卷 57, 期 1, 页码 132-145

出版社

WILEY
DOI: 10.1111/j.1365-313X.2008.03675.x

关键词

oxidative stress; peroxiredoxin; thioredoxin; thioredoxin reductase; wheat seed

资金

  1. Ministerio de Educacion y Ciencia, Spain [BIO2007-60644]
  2. Junta de Andalucia, Spain
  3. Universidad de Sevilla
  4. [CVI-182]
  5. [P06-CVI-01578]

向作者/读者索取更多资源

Cereal seed cells contain different mechanisms for protection against the oxidative stress that occurs during maturation and germination. One such mechanism is based on the antioxidant activity of a 1-Cys peroxiredoxin (1-Cys Prx) localized in the nuclei of aleurone and scutellum cells. However, nothing is known about the mechanism of activation of this enzyme. Here, we describe the pattern of localization of NADPH thioredoxin reductase (NTR) in developing and germinating wheat seeds using an immunocytochemical analysis. The presence of NTR in transfer cells, vascular tissue, developing embryo and root meristematic cells, agrees with the localization of thioredoxin h (Trx h), and supports the important function of the NTR/Trx system in cell proliferation and communication. Interestingly, NTR is found in the nuclei of seed cells suffering oxidative stress, thus showing co-localization with Trx h and 1-Cys Prx. To test whether the NTR/Trx system serves as a reductant of the 1-Cys Prx, we cloned a full-length cDNA encoding 1-Cys Prx from wheat, and expressed the recombinant protein in Escherichia coli. Using the purified components, we show NTR-dependent activity of the 1-Cys Prx. Mutants of the 1-Cys Prx allowed us to demonstrate that the peroxidatic residue of the wheat enzyme is Cys46, which is overoxidized in vitro under oxidant conditions. Analysis of extracts from developing and germinating seeds confirmed 1-Cys Prx overoxidation in vivo. Based on these results, we propose that NADPH is the source of the reducing power to regenerate 1-Cys Prx in the nuclei of seed cells suffering oxidative stress, in a process that is catalyzed by NTR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据