4.3 Article

Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China

期刊

PLANT ECOLOGY
卷 214, 期 2, 页码 221-229

出版社

SPRINGER
DOI: 10.1007/s11258-012-0161-y

关键词

Dominant species; Defoliation; Drought stress; Tolerance strategy; Avoidance strategy

资金

  1. National Natural Science Foundation of China [30800132, 30900191]

向作者/读者索取更多资源

There has been a dramatic shift in dominance from Stipa grandis communities to S. krylovii communities in the Inner Mongolia steppe of China, in recent decades due to climate change and human activity. We examined the growth and carbohydrate allocation pattern of S. grandis and S. krylovii under controlled conditions. The experimental approach involved a drought stress treatment and a simulated defoliation (clipping) treatment of both species. Growth (above ground biomass and root biomass) and carbon allocation (concentration of leaf total phenolics and pool of total non-structural carbohydrate) variables were evaluated at the end of the experiment. Responses to drought stress differed significantly between S. grandis and S. krylovii. For S. krylovii, growth and the pool of total non-structural carbohydrate were more negatively affected by drought stress, whereas concentration of total phenolics was positively affected. Drought stress reinforced responses to defoliation, and drought stress x defoliation interaction was significant for all of the variables. There was a distinct defoliation response level for growth after drought stress between the two species. For aboveground biomass, both species responded positively to drought stress, which changed from responses equivalence to S. krylovii being superior; for root biomass, the two species responded oppositely to drought stress, which changed from S. grandis being superior to S. krylovii being superior. There was a weak and reverse defoliation response level for the carbon allocation pattern after drought stress between the two species, with S. krylovii changing from superior in defense to superior in storage. These results suggested that S. grandis utilized an avoidance strategy (investment in defense compounds) and S. krylovii utilized a tolerance strategy (investment in storage for regrowth) in response to defoliation under drought stress, supporting the idea that stress-tolerant species may become the new dominant species because of their ability to re-grow after disturbance. This provided a possible explanation for the replacement of S. grandis communities from the view point of adaptive strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据