4.3 Article

Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest

期刊

PLANT ECOLOGY
卷 212, 期 4, 页码 663-673

出版社

SPRINGER
DOI: 10.1007/s11258-010-9860-4

关键词

Hydraulic redistribution; Vegetation distribution; Drought; Plant-water relations

资金

  1. NASA [NNG04GQ01G]
  2. NSF [ATM 0531485]
  3. UConn Center for Environmental Sciences and Engineering (CESE)

向作者/读者索取更多资源

Hydraulic redistribution (HR), the nocturnal transport of moisture by plant roots from wetter to drier portions of the root zone, in general can buffer plants against seasonal water deficits. However, its role in longer droughts and its long-term ecological impact are not well understood. Based on numerical model experiments for the Amazon forest, this modeling study indicates that the impact of HR on plant growth differs between droughts of different time scales. While HR increases transpiration and plant growth during regular dry seasons, it reduces dry season transpiration and net primary productivity (NPP) under extreme droughts such as those during El Nio years in the Amazon forest. This occurs because, in places where soil water storage is not able to sustain the ecosystem through the dry season, the HR-induced acceleration of moisture depletion in the early stage of the dry season reduces water availability for the rest of the dry season and causes soil moisture to reach the wilting point earlier. This gets exacerbated during extreme droughts, which jeopardizes the growth of trees that are not in dry season dormancy, i.e., evergreen trees. As a result, the combination of drought and HR increases the percentage of drought deciduous trees at the expense of evergreen trees, and the fractional coverage of forest canopy is characterized by sudden drops following extreme droughts and slow recovery afterwards. The shift of the tropical forest towards more drought deciduous trees as a result of the combined effects of extreme drought and HR has important implications for how vegetation will respond to future climate changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据