4.5 Article

Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobacco

期刊

PLANT CELL TISSUE AND ORGAN CULTURE
卷 109, 期 3, 页码 419-428

出版社

SPRINGER
DOI: 10.1007/s11240-011-0106-5

关键词

Cytochrome P450; Bentazon; Sulfonylurea; Herbicide tolerance; Selection marker

向作者/读者索取更多资源

Bentazon and sulfonylurea are two different classes of herbicides that have been widely used to kill broad-leaf weeds in rice fields. A cytochrome P450 gene, CYP81A6, encoding a monooxygenase has been previously identified to confer resistance to these two classes of herbicides in wild-type rice. In this study, we introduced the rice CYP81A6 gene into Arabidopsis and tobacco plants to test the possibility of engineering tolerance to these two types of herbicides in other susceptible plants. Arabidopsis and tobacco plants expressing CYP81A6 showed tolerance to both bentazon and bensulfuron-methyl (BSM), a widely applied sulfonylurea herbicide. The optimal concentrations of bentazon and BSM for the selection of CYP81A6 transgenic plants were also determined. In addition, we also demonstrated that CYP81A6 can be used as a selection marker to effectively screen for positive transgenic Arabidopsis plants. The selection efficiency of CYP81A6 was comparable to that of the bar gene in Arabidopsis. These results suggest that CYP81A6 can not only be used to produce transgenic plants tolerant to both bentazon and sulfonylureas, but that it can also be used as a novel plant-derived selection marker in plant transformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据