4.7 Article

DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes

期刊

PLANT CELL REPORTS
卷 34, 期 2, 页码 199-210

出版社

SPRINGER
DOI: 10.1007/s00299-014-1699-z

关键词

Chickpea; DREB1A; Drought; Root length density; Transpiration efficiency; Vapor pressure deficit

资金

  1. Indo-Swiss Collaboration for Biotechnology (ISCB) - Swiss Agency for Development and Cooperation (SDC), Switzerland
  2. Department of Biotechnology (DBT), Government of India
  3. Council for Scientific and Industrial Research (CSIR), Government of India

向作者/读者索取更多资源

We demonstrate the role of DREB1A transcription factor in better root and shoot partitioning and higher transpiration efficiency in transgenic chickpea under drought stress Chickpea (Cicer arietinum L.) is mostly exposed to terminal drought stress which adversely influences its yield. Development of cultivars for suitable drought environments can offer sustainable solutions. We genetically engineered a desi-type chickpea variety to ectopically overexpress AtDREB1A, a transcription factor known to be involved in abiotic stress response, driven by the stress-inducible Atrd29A promoter. From several transgenic events of chickpea developed by Agrobacterium-mediated genetic transformation, four single copy events (RD2, RD7, RD9 and RD10) were characterized for DREB1A gene overexpression and evaluated under water stress in a biosafety greenhouse at T6 generation. Under progressive water stress, all transgenic events showed increased DREB1A gene expression before 50 % of soil moisture was lost (50 % FTSW or fraction of transpirable soil water), with a faster DREB1A transcript accumulation in RD2 at 85 % FTSW. Compared to the untransformed control, RD2 reduced its transpiration in drier soil and higher vapor pressure deficit (VPD) range (2.0-3.4 kPa). The assessment of terminal water stress response using lysimetric system that closely mimics the soil conditions in the field, showed that transgenic events RD7 and RD10 had increased biomass partitioning into shoot, denser rooting in deeper layers of soil profile and higher transpiration efficiency than the untransformed control. Also, RD9 with deeper roots and RD10 with higher root diameter showed that the transgenic events had altered rooting pattern compared to the untransformed control. These results indicate the implicit influence of rd29A::DREB1A on mechanisms underlying water uptake, stomatal response, transpiration efficiency and rooting architecture in water-stressed plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据