4.7 Article

Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza

期刊

PLANT CELL REPORTS
卷 31, 期 12, 页码 2247-2259

出版社

SPRINGER
DOI: 10.1007/s00299-012-1334-9

关键词

Allene oxide cyclase; Jasmonates; Secondary metabolism; Signal molecule; Salvia miltiorrhiza

资金

  1. National Natural Science Foundation of China [30900786, 31100221, 31160059]

向作者/读者索取更多资源

This study provides a desirable candidate gene resource (SmAOC) to increase the content of valuable natural products via appropriate JA pathway genetic engineering. Jasmonates (JAs) are important signal molecules in plants. They regulate transcripts of defense and secondary biosynthetic metabolite genes in response to environmental stresses. Currently, JAs are widely used as elicitors to improve the content of useful secondary metabolism in plants. Synthesis of the naturally occurring enantiomer of various jasmonates is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). Here, we cloned and characterized the AOC gene (SmAOC) from Salvia miltiorrhiza. As expected, SmAOC expression was induced by abiotic stimuli such as methyl jasmonate (MeJA), ultraviolet radiation (UV) and low temperature (4 A degrees C) in S. miltiorrhiza plantlets. To demonstrate whether the engineered internal JAs pool by overexpressing AOC gene could promote secondary metabolism production, the SmAOC was incorporated into S. miltiorrhiza hairy roots. The results revealed that SmAOC overexpression significant enhanced the yields of tanshinone IIA, rosmarinic acid (RA) and lithospermic acid B (LAB) in S. miltiorrhiza hairy roots. In addition, expression levels for key genes involved in the biosynthetic pathway of diterpenes and phenolic acids were also altered. These suggest that genetic manipulation of AOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis of JAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据