4.7 Article

Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana

期刊

PLANT CELL AND ENVIRONMENT
卷 37, 期 9, 页码 2128-2138

出版社

WILEY-BLACKWELL
DOI: 10.1111/pce.12299

关键词

ANTI-SILENCING FUNCTION 1; transcription regulation

资金

  1. Chinese Ministry of Science and Technology [2012CB910500, 2011CB944600]
  2. National Natural Science Foundation of China [31271374, 30971443]

向作者/读者索取更多资源

ANTI-SILENCING FUNCTION 1 (ASF1) is an evolutionarily conserved histone chaperone involved in diverse chromatin-based processes in eukaryotes. Yet, its role in transcription and the underlying molecular mechanisms remain largely elusive, particularly in plants. Here, we show that the Arabidopsis thalianaASF1 homologous genes, AtASF1A and AtASF1B, are involved in gene transcription activation in response to heat stress. The Atasf1ab mutant displays defective basal as well as acquired thermotolerance phenotypes. Heat-induced expression of several key genes, including the HEAT SHOCK PROTEIN (HSP) genes Hsp101, Hsp70, Hsa32, Hsp17.6A and Hsp17.6B-CI, and the HEAT SHOCK FACTOR (HSF) gene HsfA2 but not HsfB1 is drastically impaired in Atasf1ab as compared with that in wild type. We found that AtASF1A/B proteins are recruited onto chromatin, and their enrichment is correlated with nucleosome removal and RNA polymerase II accumulation at the promoter and coding regions of HsfA2 and Hsa32 but not HsfB1. Moreover, AtASF1A/B facilitate H3K56 acetylation (H3K56ac), which is associated with HsfA2 and Hsa32 activation. Taken together, our study unravels an important function of AtASF1A/B in plant heat stress response and suggests that AtASF1A/B participate in transcription activation of some but not all HSF and HSP genes via nucleosome removal and H3K56ac stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据