4.7 Article

Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance

期刊

PLANT CELL AND ENVIRONMENT
卷 37, 期 1, 页码 140-152

出版社

WILEY
DOI: 10.1111/pce.12138

关键词

Cadmium; fet3fet4 yeast mutant; heavy metal; iron uptake; xylem loading

资金

  1. Council of Scientific and Industrial Research, New Delhi [BSC-0107]
  2. Indian Council of Medical Research, India
  3. Council of Scientific and Industrial Research, India

向作者/读者索取更多资源

Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance-Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据