4.7 Article

Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables

期刊

PLANT CELL AND ENVIRONMENT
卷 36, 期 12, 页码 2190-2206

出版社

WILEY
DOI: 10.1111/pce.12129

关键词

stable water isotopes; steady state; transpiration

资金

  1. Keck Foundation
  2. U.S. Department of Energy (DOE) Office of Science Graduate Fellowship Program [DE-AC05-06OR23100]
  3. Australian Research Council [FT0992063, DP110104269]
  4. Australian Research Council [FT0992063] Funding Source: Australian Research Council

向作者/读者索取更多资源

During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of O-18 enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据