4.7 Article

Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana

期刊

PLANT CELL AND ENVIRONMENT
卷 35, 期 12, 页码 2192-2207

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-3040.2012.02545.x

关键词

herbivore-induced plant volatiles; PTR-MS; terpenes; volatile organic compounds; Y-tube-olfactometer

资金

  1. 'Deutsche Forschungsgemeinschaft' (DFG), Bonn, Germany [FL 263/19-1]

向作者/读者索取更多资源

The indirect defences of plants are comprised of herbivore-induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co-evolved plant-herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T-oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S-oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T-oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non-volatile polyphenolic leaf constituents (as quercetin-, kaempferol- and flavonol glycosides). In addition to non-volatile metabolic differences, typically defensive HIPV emissions differed between S-oaks and T-oaks. Female moths were attracted by the blend of HIPVs from S-oaks, showing significantly higher amounts of (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E)-beta-ocimene and avoid T-oaks with relative high fraction of the sesquiterpenes alpha-farnesene and germacrene D. Hence, the strategy of T-oaks exhibiting directly herbivore-repellent HIPV emissions instead of high emissions of predator-attracting HIPVs of the S-oaks appears to be the better mechanism for avoiding defoliation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据