4.7 Article

On the 13C/12C isotopic signal of day and night respiration at the mesocosm level

期刊

PLANT CELL AND ENVIRONMENT
卷 33, 期 6, 页码 900-913

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-3040.2010.02115.x

关键词

Day respiration; isotope; fractionation; mesocosm; sunflower

资金

  1. European Community [HPRN-CT-1999-00059]

向作者/读者索取更多资源

While there is currently intense effort to examine the 13C signal of CO2 evolved in the dark, less is known on the isotope composition of day-respired CO2. This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO2 with a different delta 13C value from that of net-fixed CO2) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO2]. We show that whole mesocosm-respired CO2 is slightly 13C depleted in the light at the mesocosm level (by 0.2-0.8 parts per thousand), while it is slightly 13C enriched in darkness (by 1.5-3.2 parts per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the 13C abundance in day- and night-evolved CO2. We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO2 production may change, thereby explaining the different 12C/13C respiratory fractionations in the light and in the dark.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据