4.8 Article

Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2

期刊

PLANT CELL
卷 23, 期 10, 页码 3853-3865

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.111.089771

关键词

-

资金

  1. Chinese Academy of Sciences (CAS)
  2. Royal Netherlands Academy of Arts and Sciences (KNAW) CAS-KNAW [06PhD12]
  3. Dutch Science Organization NWO (VIDI) [864.06.007]
  4. Dutch Russian Research Cooperation [047.018.001]
  5. VICI [865.06.002]
  6. EC Marie Curie Research Training Network [MRTN-CT-2006-035546 NODPERCEPTION]
  7. Pakistan Higher Education Commission
  8. Centre for BioSystems Genomics

向作者/读者索取更多资源

Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据