4.8 Article

The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

期刊

PLANT CELL
卷 21, 期 10, 页码 3326-3338

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.109.069401

关键词

-

资金

  1. National Institutes of Health
  2. National Institute of General Medicine [R01 GM78536-01A1]
  3. National Science Foundation [IOB 0419695]

向作者/读者索取更多资源

Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin (FPN) is the sole iron efflux transporter identified to date in animals, and there are two closely related orthologs in Arabidopsis thaliana, IRON REGULATED1 (IREG1/FPN1) and IREG2/FPN2. FPN1 localizes to the plasma membrane and is expressed in the stele, suggesting a role in vascular loading; FPN2 localizes to the vacuole and is expressed in the two outermost layers of the root in response to iron deficiency, suggesting a role in buffering metal influx. Consistent with these roles, fpn2 has a diminished iron deficiency response, whereas fpn1 fpn2 has an elevated iron deficiency response. Ferroportins also play a role in cobalt homeostasis; a survey of Arabidopsis accessions for ionomic phenotypes showed that truncation of FPN2 results in elevated shoot cobalt levels and leads to increased sensitivity to the metal. Conversely, loss of FPN1 abolishes shoot cobalt accumulation, even in the cobalt accumulating mutant frd3. Consequently, in the fpn1 fpn2 double mutant, cobalt cannot move to the shoot via FPN1 and is not sequestered in the root vacuoles via FPN2; instead, cobalt likely accumulates in the root cytoplasm causing fpn1 fpn2 to be even more sensitive to cobalt than fpn2 mutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据