4.8 Article

The Rice α-Amylase Glycoprotein Is Targeted from the Golgi Apparatus through the Secretory Pathway to the Plastids

期刊

PLANT CELL
卷 21, 期 9, 页码 2844-2858

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.109.068288

关键词

-

资金

  1. Ministry of Agriculture, Forestry, and Fisheries of Japan [IPG0021]
  2. Ministry of Education, Culture, Sports, Science, and Technology, Japan [16658042, 17051011, 17078009]
  3. Grants-in-Aid for Scientific Research [16658042, 17051011, 17078009] Funding Source: KAKEN

向作者/读者索取更多资源

The well-characterized secretory glycoprotein, rice (Oryza sativa) alpha-amylase isoform I-1 (AmyI-1), was localized within the plastids and proved to be involved in the degradation of starch granules in the organelles of rice cells. In addition, a large portion of transiently expressed AmyI-1 fused to green fluorescent protein (AmyI-1-GFP) colocalized with a simultaneously expressed fluorescent plastid marker in onion (Allium cepa) epidermal cells. The plastid targeting of AmyI-1 was inhibited by both dominant-negative and constitutively active mutants of Arabidopsis thaliana ARF1 and Arabidopsis SAR1, which arrest endoplasmic reticulum-to-Golgi traffic. In cells expressing fluorescent trans-Golgi and plastid markers, these fluorescent markers frequently colocalized when coexpressed with AmyI-1. Three-dimensional time-lapse imaging and electron microscopy of high-pressure frozen/freeze-substituted cells demonstrated that contact of the Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids occur within the cells. The transient expression of a series of C-terminal-truncated AmyI-1-GFP fusion proteins in the onion cell system showed that the region from Trp-301 to Gln-369 is necessary for plastid targeting of AmyI-1. Furthermore, the results obtained by site-directed mutations of Trp-302 and Gly-354, located on the surface and on opposite sides of the AmyI-1 protein, suggest that multiple surface regions are necessary for plastid targeting. Thus, Golgi-to-plastid traffic appears to be involved in the transport of glycoproteins to plastids and plastid targeting seems to be accomplished in a sorting signal-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据