4.7 Article

Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance

期刊

PLANT BIOTECHNOLOGY JOURNAL
卷 8, 期 1, 页码 76-87

出版社

WILEY
DOI: 10.1111/j.1467-7652.2009.00467.x

关键词

Cajanus cajan hybrid-proline-rich protein; eight-cysteine-motif; multiple abiotic stress tolerance; PCR-subtracted cDNA library; plant biomass; stress-inducible CcHyPRP gene

资金

  1. Andhra Pradesh-Netherlands Biotechnology Programme, Hyderabad

向作者/读者索取更多资源

A hybrid-proline-rich protein encoding gene (CcHyPRP) has been isolated and characterized, for the first time, from the subtracted cDNA library of pigeonpea (Cajanus cajan L.) plants subjected to drought stress. Functionality of CcHyPRP has been validated for abiotic stress tolerance using the heterologous yeast and Arabidopsis systems. The CcHyPRP contained a repetitive proline-rich (PR) N-terminal domain and a conserved eight cysteine motif (8CM) at the C-terminus. Southern analysis disclosed single-copy nature of CcHyPRP gene in the pigeonpea genome. Northern analysis revealed higher levels of CcHyPRP transcripts in PEG, NaCl, heat (42 degrees C), cold and ABA-treated plants compared with the weak signals observed in the untreated plants, suggesting stress-responsive nature of the CcHyPRP gene. In yeast, expression of CcHyPRP imparted marked tolerance against abiotic stresses exerted by PEG, high temperature, NaCl and LiCl. Transgenic Arabidopsis lines, expressing CcHyPRP under the control of CaMV35S and rd29A promoters, when subjected to PEG, mannitol, NaCl, LiCl and heat (42 degrees C) stress, developed into healthy plants with profuse root system and increased biomass in contrast to the weak-stunted wild-type plants. The CcHyPRP-transgenics driven by stress-inducible rd29A exhibited similar stress-tolerance as that of CaMV35S-lines without any negative effects on plant morphology, implying that stress-inducible promoters are preferable for production of stress tolerant transgenics. The overall results amply demonstrate the profound effect of CcHyPRP in bestowing multiple abiotic stress tolerance at cellular and whole plant levels. Accordingly, the multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants with abiotic stress tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据