4.1 Review

Unravelling the response of poplar (Populus nigra) roots to mechanical stress imposed by bending

期刊

PLANT BIOSYSTEMS
卷 142, 期 2, 页码 401-413

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/11263500802151058

关键词

root system; mechanical stress; poplar; Populus nigra; woody root

向作者/读者索取更多资源

Mechanical stress is a widespread environmental condition that can be caused by several factors (i.e. gravity, touch, wind, soil density, soil compaction and grazing, slope) and that can severely affect plant stability. In response to mechanical stress and to improve their anchorage, plants have developed complex mechanisms to detect mechanical perturbation and to induce a suite of modifications at anatomical, physiological, biochemical, biophysical and molecular level. Although it is well recognized that one of the primary functions of root systems is to anchor the plant to the soil, root response to mechanical stresses have been investigated mainly at morphological and biomechanical level, whereas investigations about the molecular mechanisms underlying these important alterations are still in an initial stage. We have used an experimental system in which the taproot poplar seedlings are bent to simulate mechanical perturbation to begin investigate the mechanisms involved in root response to mechanical stress. The results reported herein show that, in response to bending, the poplar root changes its morphology by emitting new lateral roots, and its biomechanical properties by increasing the root biomass and lignin synthesis. In addition, using a proteomic approach, we found that several proteins involved in the signal transduction pathway, detoxification and metabolism are up-regulated and/or down-regulated in the bent root. These results provide new insight into the obscure field of woody root response to mechanical stress, and can serve as a basis for future investigations aimed at unravelling the complex mechanism involved in the reaction of root biology to environmental stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据