4.7 Article

Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress

期刊

PLANT BIOLOGY
卷 16, 期 1, 页码 88-96

出版社

WILEY
DOI: 10.1111/plb.12017

关键词

Antioxidant; ascorbate oxidase; cell wall fractions; peroxidase; phenolics; Zea mays

资金

  1. Ministry of Education and Science of Republic of Serbia [173040]

向作者/读者索取更多资源

An analysis of peroxidase and ascorbate oxidase activity, phenolic content and antioxidant capacity of isolated maize root cell walls was performed in controls and plants stressed with polyethylene glycol (PEG) or heavy metals, zinc or copper. Peroxidase activity (oxidative and peroxidative) was more pronounced in the ionic than in the covalent cell wall fraction. PEG induced an increase and Zn2+ a decrease of both ionically bound peroxidase activities. In the covalent fraction, Cu2+ decreased oxidative and increased peroxidative activity of peroxidase. Isoelectric focusing of ionically bound proteins and activity staining for peroxidase demonstrated increased intensities and appearance of new acidic isoforms, especially in Zn2+ and PEG treatments. Most pronounced basic isoforms (pI similar to 7.5) in controls, decreased in intensity or completely disappeared in stressed plants. Ascorbate oxidase activity was significantly increased by PEG and decreased by Zn2+ treatments, and highly correlated with peroxidase activity. Antioxidant capacity and total phenolics content increased in heavy metal-treated and decreased in PEG-treated plants. Analysis of individual phenolic components revealed p-coumaric and ferulic acids, as the most abundant, as well as ferulic acid dimers, trimers and tetramers in the cell walls; their quantity increased under stress conditions. Results presented demonstrate the existence of diverse mechanisms of plant response to different stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据