4.7 Article

Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species

期刊

PLANT BIOLOGY
卷 15, 期 -, 页码 148-156

出版社

WILEY
DOI: 10.1111/j.1438-8677.2012.00688.x

关键词

Isoprene emission; isoprene synthase; molecular-genetic assignment; morphological classification; stomatal conductance

向作者/读者索取更多资源

European deciduous oaks are closely related and are known for their strong emission of volatile isoprenoids. They are chemo-taxonomically diverse, but hybridise frequently. Four-year-old oak seedlings growing together in a model ecosystem facility under near-natural conditions were studied. The leaves were morphologically classified in the three oak species Quercus robur, Q. pubescens and Q. petraea (with four provenances each) and further investigated by a molecular-genetic approach. Q. robur was morphologically and genetically clearly different from Q. pubescens and Q. petraea, whereas Q. pubescens and Q. petraea individuals used in this study were morphologically and genetically more similar. There was a minor impact of among and within species variability on isoprene synthesis, isoprene emission and photosynthesis. Isoprene emission rates normalised to 25 degrees C leaf temperature ranged from 5.78 to 10.66 nmol m(-2) s(-1), whereas photosynthesis ranged from 12.8 to 17.6 mu mol m(-2) s(-1). On cloudy days, among the provenances of each species, only net photosynthesis of the Q. robur provenance Hunenberg was reduced and isoprene synthase activity of the Q. pubescens provenance Promotogno increased. On sunny days, photosynthesis did not differ among the provenances. Over all provenances, gas exchange on cloudy days did not differ significantly from sunny days. In the combined data of cloudy and sunny days, no differences between the studied provenances and oak species were detected in isoprene emission and photosynthesis. Thus, isoprene emission and photosynthesis rates were remarkably stable among oak species and provenances. The results indicate that taxonomic differences in the studied oak species are not reflected in isoprene emission and photosynthesis, probably because of the high plasticity of gene expression resulting in high phenotypic flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据