4.7 Article

Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat

期刊

PLANT AND SOIL
卷 368, 期 1-2, 页码 57-72

出版社

SPRINGER
DOI: 10.1007/s11104-013-1761-6

关键词

Heat Stress; Leaf chlorosis; Magnesium; Maize; Oxidative stress; Wheat

资金

  1. K+S KALI GmbH (Kassel, Germany)

向作者/读者索取更多资源

Aims Heat stress is a growing concern in crop production because of global warming. In many cropping systems heat stress often occurs simultaneously with other environmental stress factors such as mineral nutrient deficiencies. This study aimed to investigate the role of adequate magnesium (Mg) nutrition in mitigating the detrimental effects of heat stress on wheat (Triticum aestivum) and maize (Zea mays). Methods Wheat and maize plants were grown in solution culture with low or adequate Mg supply at 25/22 degrees C (light/dark). Half of the plants were, then, exposed to heat stress at 35/28 degrees C (light/dark). Development of leaf chlorosis and changes in root and shoot growth, chlorophyll and Mg concentrations as well as the activities of major antioxidative enzymes were quantified in the experimental plants. Additionally, maize plants were analyzed for the specific weights (e. g., dry or fresh weight per a given leaf surface area) and soluble carbohydrate concentrations of sink and source leaves. Results Visual leaf symptoms of Mg deficiency were aggravated in wheat and maize when exposed to heat stress. In both species, root growth was more sensitive to Mg deficiency than shoot growth, and the shoot-to-root ratios peaked when heat stress was combined with Mg deficiency. Magnesium deficiency markedly reduced soluble carbohydrate concentrations in young leaf; but resulted in substantial increase in source leaves. Magnesium deficiency also increased activities of antioxidative enzymes, especially when combined with heat stress. The highest activities of superoxide dismutase (up to 80 % above the control), glutathione reductase (up to 250 % above the control) and ascorbate peroxidase (up to 300 % above the control) were measured when Mg-deficient plants were subjected to heat, indicating stimulated formation of reactive oxygen species (ROS) in Mg deficient leaves under heat stress. Conclusions Magnesium deficiency increases susceptibility of wheat and maize plants to heat stress, probably by increasing oxidative cellular damage caused by ROS. Ensuring a sufficiently high Mg supply for crop plants through Mg fertilization is a critical factor for minimizing heat-related losses in crop production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据