4.7 Article

Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh

期刊

PLANT AND SOIL
卷 338, 期 1-2, 页码 367-382

出版社

SPRINGER
DOI: 10.1007/s11104-010-0551-7

关键词

Rice grain arsenic; Low arsenic rice varieties; Genotype-environment interaction (GEI); Main Effect and Multiplicative Interaction (AMMI)

资金

  1. US-AID Bangladesh

向作者/读者索取更多资源

Genetic analysis of 38 rice varieties released by the Bangladesh Rice Research Institute (BRRI) identified 34 as indica, 2 as admixed between indica and aus, and 4 as belonging to the aromatic/Group V subpopulation. Indica varieties developed for the two major rice-growing seasons, the wet monsoon (aman) and the dry winter (boro), were not genetically differentiated. The Additive Main Effect and Multiplicative Interaction (AMMI) model was used to assess the effect of genotype (G), environment (E) and genotype-environment interaction (GEI) on grain arsenic (As) concentration when these rice varieties were grown at ten BRRI research stations located across diverse agro-ecological zones in Bangladesh. G, E and GEI, significantly influenced grain As concentration in both seasons. Overall, E accounted for 69%-80%, G 9%-10% and GEI 10%-21% of the observed variability in grain As. One site, Satkhira had the highest mean grain As concentration and the largest interaction principle component analysis (IPCA) scores in both seasons, indicating maximum interaction with genotypes. Site effects were more pronounced in the boro than in the aman season. The soil level of poorly crystalline Fe-oxide (AOFe), the ratio of AOFe to associated As, soil phosphate extractable As and soil pH were important sub-components of E controlling rice grain As concentration. Irrespective of environment, the mean grain As concentration was significantly higher in the boro (0.290 mg As kg(-1)) than in the aman (0.154 mg As kg(-1)) season (p < 0.0001), though the reasons for this are unclear. Based on mean grain As concentration and stability across environments, the variety BR3 is currently the best choice for the boro season, while BR 23 and BRRI dhan 38 are the best choices for the aman season. Popular varieties BR 11 (aman) and BRRI dhan 28 and 29 (boro) had grain As concentrations close to the mean value and were fairly stable across environments, while high-yielding, short-duration aman season varieties (BRRI dhan 32, 33 and 39) developed for intensified cropping had relatively high grain As concentrations. Results suggest that genetic approaches to reducing As in rice grain will require the introduction of novel genetic variation and must be accompanied by appropriate management strategies to reduce As availability and uptake by rice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据