4.7 Article

Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols

期刊

PLANT AND SOIL
卷 317, 期 1-2, 页码 235-255

出版社

SPRINGER
DOI: 10.1007/s11104-008-9805-z

关键词

Waste mica; Alfisol; Sudan grass; Bacillus mucilaginosus; Pools of K; X-ray diffraction analysis

资金

  1. Indian Council of Agricultural Research (ICAR)
  2. Division of Soil Science and Agricultural Chemistry
  3. Indian Agricultural Research Institute (IARI), New Delhi

向作者/读者索取更多资源

The main aim of this research was to study the dynamics of K release from waste mica inoculated with potassium solubilizing microorganism (Bacillus mucilaginosus) and to investigate its effectiveness as potassic-fertilizer using sudan grass (Sorghum vulgare Pers.) var Sudanensis as test crop grown under two Alfisols. Results revealed that application of mica significantly enhanced biomass yield, uptake and per cent K recoveries by sudan grass than control (no-K). Biomass yield, uptake and per cent K recoveries increased further when mica was inoculated with bacterial strain in both the soils than uninoculated mica. Alfisol from Hazaribag recorded higher yield, uptake and K recoveries than Alfisol from Bhubaneswar. The dynamics of K in soils indicated that K was released from mica to water-soluble and exchangeable pools of K due to inoculation of mica with Bacillus mucilaginosus in both the soils. Significantly greater amounts of water-soluble, exchangeable and non-exchangeable K were maintained in Alfisol from Hazaribag than Bhubaneswar. Release kinetics of K showed significant release of K from mica treated with bacterial strain. Significant correlation between biomass yield, K uptake by sudan grass and different pools of K in soils were observed. X-ray diffraction analysis indicates greater dissolution of mica due to inoculation of Bacillus mucilaginosus strain in both the soils. Thus, bio-intervention of waste mica could be an alternative and viable technology to solubilize insoluble K into plant available pool and used efficiently as a source of K-fertilizer for sustaining crop production and maintaining soil potassium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据