4.7 Article

Effects of High CO2 on Growth and Metabolism of Arabidopsis Seedlings During Growth with a Constantly Limited Supply of Nitrogen

期刊

PLANT AND CELL PHYSIOLOGY
卷 55, 期 2, 页码 281-292

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pct186

关键词

Arabidopsis; High-CO2 response; Metabolome; Nitrogen limitation

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [21114003]
  2. Grants-in-Aid for Scientific Research [21114003, 24780065] Funding Source: KAKEN

向作者/读者索取更多资源

Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据