4.7 Article

The Arabidopsis Cytosolic Acyl-CoA-Binding Proteins Play Combinatory Roles in Pollen Development

期刊

PLANT AND CELL PHYSIOLOGY
卷 56, 期 2, 页码 322-333

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcu163

关键词

Acyl-CoA-binding protein; Exine; Lipid metabolism; Oil body; Reproduction

资金

  1. Wilson and Amelia Wong Endowment Fund
  2. Research Grants Council of Hong Kong [HKU765813M]
  3. University of Hong Kong

向作者/读者索取更多资源

In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing beta-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据