4.7 Article

Prolonged Exposure to Elevated Temperature Induces Floral Transition via Up-Regulation of Cytosolic Ascorbate Peroxidase 1 and Subsequent Reduction of the Ascorbate Redox Ratio in Oncidium Hybrid Orchid

期刊

PLANT AND CELL PHYSIOLOGY
卷 55, 期 12, 页码 2164-2176

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcu146

关键词

Ascorbate (AsA) redox ratio; Cytosolic ascorbate peroxidase 1 (cytAPX1); Flowering; Oncidium; Thermal stress

资金

  1. National Science Council, Taiwan [NSC-102-3011-P-002-008]

向作者/读者索取更多资源

The bolting time of the Oncidium hybrid orchid is not season dependent and so it is a useful year-round model system to study thermal-induced flowering mechanisms in planta. Previously, we reported that a low ascorbate (AsA) content is essential for floral transition in Oncidium; however, the environmental factors governing initiation of the flowering process remained to be elucidated. The current study revealed that a prolonged elevated temperature treatment (30 degrees C over a 14 d period) induces floral transition. This floral induction in response to thermal stress was associated with a significantly increased reactive oxygen species (ROS) level and a lowered AsA redox ratio, as well as prominently up-regulated expression of cytosolic ascorbate peroxidase (cytAPX1). Transcriptome analysis confirmed that increased temperature affected the differential expression of genes involved in antioxidant metabolism. Likewise, transgenic Arabidopsis ectopically overexpressing Oncidium cytAPX1 displayed an early-flowering phenotype and low AsA redox ratio under thermal stress, while cytAPX1 mutants, apx1-1 and apx1-2, exhibited a delayed-flowering phenotype and a high AsA redox ratio. Our present data illustrate that the floral transition response to thermal stress is mediated by the AsA redox ratio, and that CytAPX plays a pivotal role in modulating the AsA redox ratio in Oncidium hybrid orchid. Taken together, the results from this investigation of the thermal-induced flowering mechanism indicated that the AsA redox ratio is a master switch to mediate phase transition from the vegetative to reproductive stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据