4.7 Article

ZmLEA3, a Multifunctional Group 3 LEA Protein from Maize (Zea mays L.), is Involved in Biotic and Abiotic Stresses

期刊

PLANT AND CELL PHYSIOLOGY
卷 54, 期 6, 页码 944-959

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pct047

关键词

Hypersensitive response; Metal binding; Osmotic stress; Oxidative stress; Plant pathogens; ZmLEA3

资金

  1. Nation Natural Science Foundation of China work [31071337, 31271633]
  2. State Key Basic Research and Development Plan of China [2009CB118500]

向作者/读者索取更多资源

Late embryogenesis abundant (LEA) proteins accumulate to high levels during the late stage of seed maturation and in response to water deficit, and are involved in protecting higher plants from damage caused by environmental stresses, especially drought. In the present study, a novel maize (Zea mays L.) group 3 LEA gene, ZmLEA3, was identified and later characterized using transgenic tobacco plants to investigate its functions in abiotic and biotic stresses. Transcript accumulation demonstrated that ZmLEA3 was induced in leaves by high salinity, low temperature, osmotic and oxidative stress as well as by signaling molecules such as ABA, salicylic acid (SA) and methyl jasmonate (MeJA). The transcript of ZmLEA3 could also be induced by pathogens [Pseudomonas syringae pv. tomato DC3000 (pst dc3000)]. ZmLEA3 is located in the cytosol and the nucles. Further study indicated that the ZmLEA3 protein could bind Mn2+, Fe3+, Cu2+ and Zn2+. Overexpression of ZmLEA3 in transgenic tobacco (Nicotiana tabacum) and yeast (GS115) conferred tolerance to osmotic and oxidative stresses. Interestingly, we also found that overexpression of ZmLEA3 in transgenic tobacco increased the hypersensitive cell death triggered by pst dc3000 and enhanced the expression of PR1a, PR2 and PR4 when compared with the wild type. Thus, we proposed that the ZmLEA3 protein plays a role in protecting plants from damage by protecting protein structure and binding metals under osmotic and oxidative stresses. In addition, ZmLEA3 may also enhance transgenic plant tolerance to biotic stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据