4.7 Article

Arabidopsis AUXIN RESPONSE FACTOR6 and 8 Regulate Jasmonic Acid Biosynthesis and Floral Organ Development via Repression of Class 1 KNOX Genes

期刊

PLANT AND CELL PHYSIOLOGY
卷 51, 期 1, 页码 164-175

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcp176

关键词

Arabidopsis thaliana; AUXIN RESPONSE FACTOR; Class 1 KNOX genes; Floral organ development; Jasmonic acid; Meristem

资金

  1. Japan Society for the Promotion of Science (JSPS) [16370020]
  2. Ministry of Education, Sports, Culture, Science and Technology of Japan [17027011, 17051013, 19039014, 21027016, 19060008]
  3. Global COE Program

向作者/读者索取更多资源

Two mutations in Arabidopsis thaliana, auxin response factor6 (arf6) and arf8, concomitantly delayed the elongation of floral organs and subsequently delayed the opening of flower buds. This phenotype is shared with the jasmonic acid (JA)-deficient mutant dad1, and, indeed, the JA level of arf6 arf8 flower buds was decreased. Among JA biosynthetic genes, the expression level of DAD1 (DEFECTIVE IN ANTHER DEHISCENCE1) was markedly decreased in the double mutant, suggesting that ARF6 and ARF8 are required for activation of DAD1 expression. The double mutant arf6 arf8 also showed other developmental defects in flowers, such as aberrant vascular patterning and lack of epidermal cell differentiation in petals. We found that class 1 KNOX genes were expressed ectopically in the developing floral organs of arf6 arf8, and mutations in any of the class 1 KNOX genes (knat2, knat6, bp and hemizygous stm) partially suppressed the defects in the double mutant. Furthermore, ectopic expression of the STM gene caused a phenotype similar to that of arf6 arf8, including the down-regulation of DAD1 expression. These results suggested that most defects in arf6 arf8 are attributable to abnormal expression of class 1 KNOX genes. The expression of AS1 and AS2 was not affected in arf6 arf8 flowers, and as1 and arf6 arf8 additively increased the expression of class 1 KNOX genes. We concluded that ARF6 and ARF8, in parallel with AS1 and AS2, repress the class 1 KNOX genes in developing floral organs to allow progression of the development of these organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据