4.7 Article

DCW11, Down-Regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2C is related to cytoplasmic male sterility

期刊

PLANT AND CELL PHYSIOLOGY
卷 49, 期 4, 页码 633-640

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcn036

关键词

cytoplasmic male sterility (CMS); mitochondrial retrograde signaling; Oryza sativa; protein phosphatase 2C

向作者/读者索取更多资源

Causes of cytoplasmic male sterility (CMS) in plants have been studied for two decades, and mitochondrial chimeric genes have been predicted to induce CMS. However, it is unclear what happens after CMS-associated proteins accumulate in mitochondria. In our previous study of microarray analysis, we found that 140 genes are aberrantly regulated in anthers of CW-type CMS of rice (Oryza sativa L.). In the present study, we investigated DCW11, one of the down-regulated genes in CW-CMS encoding a protein phosphatase 2C (PP2C). DCW11 mRNA was preferentially expressed in anthers, with the highest expression in mature pollen. As predicted by the N-terminal sequence, DCW11 signal peptidegreen fluorescent protein (GFP) fusion protein was localized in mitochondria. Knockdown of DCW11 in wild-type rice by RNA interference caused a major loss of seed-set fertility, without visible defect in pollen development. Since this knockdown phenotype resembled that of CW-CMS, we concluded that the down-regulation of DCW11 is correlated with CW-CMS. This idea was supported by the up-regulation of alternative oxidase 1a (AOX1a), which is known to be regulated by mitochondrial retrograde signaling, in DCW11 knockdown lines. Down-regulation of DCW11 and up-regulation of AOX1a were also observed in two other types of rice CMS. Our result indicates that DCW11 could play a role as a mitochondrial signal transduction mediator in pollen germination. 6

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据