4.5 Article

Spatial and temporal expression of folate-related transporters and metabolic enzymes during mouse placental development

期刊

PLACENTA
卷 33, 期 5, 页码 440-448

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.placenta.2012.02.005

关键词

Mthfr; Methionine synthase; Slc46a1; PCFT; Rfc1; Trophoblast giant cells; Glycogen trophoblast cells

资金

  1. Centre for Trophoblast Research (CTR)
  2. Natural Sciences and Engineering Research Council (NSERC)
  3. Canadian Institutes of Health Research (CIHR)

向作者/读者索取更多资源

It is well understood that maternal folate deficiency can cause abnormal fetal development. However, the extent to which placental development and function are also dependent upon folate uptake and metabolism remains unclear. To understand which trophoblast cell types may be affected by folate deficiency or abnormal folate metabolism, we completed a comprehensive spatial and temporal protein expression analysis of folate receptor (Folr), folate transporters (proton-coupled folate receptor [Slc46a1 or PCFT] and reduced folate carrier-1 [Rfc1]) and folate metabolic enzymes (5,10-methylenetetrahydrofolate reductase [Mthfr] and methionine synthase [Mtr]) in histological sections of mouse placentas from early development (E8.5) until term (E18.5). We observed that the highest level of protein expression was during early development (E8.5-E10.5), prior to the formation of the three main layers of the mature placenta suggesting that folate uptake and metabolism may be required for placental development, itself. As expected, the labyrinth trophoblast cells, which are responsible for nutrient transport, expressed these proteins throughout pregnancy, including robust expression in the sinusoidal trophoblast giant cells that line the maternal blood spaces. Other trophoblast giant cell (TGC) subtypes (parietal-TGCs and canal-TGCs), whose function does not include nutrient transport, expressed folate transporters and enzymes from E8.5 onwards. Remarkably, these proteins were also detected in glycogen trophoblast cells from E12.5-E18.5 suggesting a new role in folate uptake and metabolism for these cells. Together, these data provide evidence that folate may be necessary for normal placental development and function, and perturbations in its availability or metabolism may lead to secondary effects on fetal development. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据