4.2 Article

Highly reflective titania nanoparticle-based coating

期刊

PIGMENT & RESIN TECHNOLOGY
卷 41, 期 3, 页码 156-162

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/03699421211226444

关键词

Coatings; Reflection; Illuminance; Highly reflective; Titania; Nanoparticles; Reflectors; Illumination

向作者/读者索取更多资源

Purpose - The purpose of this paper is to investigate the reflective properties of titania (TiO2) nanoparticle-based coating. Design/methodology/approach - TiO2 nanoparticles, synthesised by sol-gel method, were characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultraviolet-visible absorption spectroscopy (UV-vis). The coating material has been prepared by dispersing titania nanoparticles in an acrylic binder with different pigment to binder weight ratio. The reflectors were prepared by applying this coating material to different coating thicknesses to aluminium sheets. Findings - In the study reported here, the coating material could produce reflectors with diffuse reflectance, similar to 99 per cent, using coating material, having binder by weight ratio between 14 and 20 per cent, and thickness, 0.15 mm. On exposing the developed reflectors to different levels of illumination (upto 20,000 lux), they were still found to have diffuse reflectance of more than 96 per cent almost throughout the visible spectrum. Practical implications - The fabricated reflectors find applications in commercial optical products, such as: reflective panels, luminaries, etc. Originality/value - As of today, the reflective coatings used are of conventional type, which employ bulk TiO2 particles. In this study, we are reporting TiO2 nanoparticle-based highly reflective coating. This is an original work, and, to the best of our knowledge, no one has ever reported on TiO2 nanoparticle-based reflective coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据