4.7 Article

In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from Swertia corymbosa

期刊

PHYTOMEDICINE
卷 21, 期 11, 页码 1237-1248

出版社

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2014.06.011

关键词

Swertia corymbosa; Xanthones; Antidiabetic activity; Antioxidant; 2BEL; SUR1

向作者/读者索取更多资源

1, 2, 8-trihydroxy-6-methoxy xanthone (1) and 1, 2- dihydroxy-6-methoxyxanthone-8-O-beta-D-xylopyranosyl (2) are the main constituents of petroleum ether and ethyl acetate extracts from Swertia corymbosa (Gentinaceae), a medicinal plant used in Indian traditional system for the treatment of diabetes. The present study was designed to examine the antihypoglycemic, antihyperlipidemic and antioxidant effect of compounds 1 and 2 in streptozotocin (STZ) induced diabetic rats. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of STZ (60 mg/kg b.w.). The isolated compounds 1 and 2 at a dose of 50 mg/kg b.w., produced the maximum fall of 83% in the blood glucose level in the diabetic rats after 3 h of the treatment. The administration of 1 and 2 (50 mg/kg b.w.) daily for 28 days in STZ induced diabetic rats, resulted in a significant decrease in blood glucose, glycosylated hemoglobin, SGOT, SGPT, ALP serum urea and creatinine with significant rise in plasma insulin level. Test compounds 1 and 2 showed antihyperlipidemic activities as evidenced by significant decrease in serum TC, TG, LDL-C, VLDL-C levels coupled together with elevation of HDL-C level in diabetic treated rats when compared to diabetic untreated rats, indicate the protective role against liver and kidney damage. The results of histopathology also showed 1 and 2 protected tissues (pancreas, liver and kidney) against peroxidation damage and maintained tissue integrity. Further, the molecular interaction study of the ligands 1, 2 and glibenclamide with various diabetes mellitus related protein targets like glucokinase (PDB ID: 1V4S), fructose-1, 6-bisphosphatase 1 (PDB ID: 2JJK) 11-beta-hydroxysteroid dehydrogenase (PDB ID: 2BEL) and modeled protein sulfonylurea receptor 1 (SUR1) showed that ligand 1 and 2 possess binding affinity with all protein targets except for 2BEL target protein for which ligand 1 has no interaction. The ligand pose with 2BEL and SUR1 protein target of ligand 2 gave the best binding conformation. Hence 1 and 2 can be considered for developing into a potent antidiabetic drug. (C) 2014 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据