4.5 Article Proceedings Paper

Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance

期刊

PHYTOCHEMISTRY REVIEWS
卷 8, 期 1, 页码 149-170

出版社

SPRINGER
DOI: 10.1007/s11101-008-9117-1

关键词

Indolic glucosinolates; Jasmonate signaling; Myrosinase associated proteins; Systemic induction; Transcription factors

向作者/读者索取更多资源

Like many other plant defense compounds, glucosinolates are present constitutively in plant tissues, but are also induced to higher levels by herbivore attack. Of the major glucosinolate types, indolic glucosinolates are most frequently induced regardless of the type of herbivore involved. Over 90% of previous studies found that herbivore damage to glucosinolate-containing plants led to an increased accumulation of indolic glucosinolates at levels ranging up to 20-fold. Aliphatic and aromatic glucosinolates are also commonly induced by herbivores, though usually at much lower magnitudes than indolic glucosinolates, and aliphatic and aromatic glucosinolates may even undergo declines following herbivory. The glucosinolate defense system also requires another partner, the enzyme myrosinase, to hydrolyze the parent glucosinolates into biologically active derivatives. Much less is known about myrosinase induction after herbivory compared to glucosinolate induction, and no general trends are evident. However, it is clear that insect feeding stimulates the formation of various myrosinase associated proteins whose function is not yet understood. The biochemical mechanism of glucosinolate induction involves a jasmonate signaling cascade that leads eventually to increases in the transcript levels of glucosinolate biosynthetic genes. Several recently described transcription factors controlling glucosinolate biosynthesis are activated by herbivory or wounding. Herbivore induction of glucosinolates has sometimes been demonstrated to increase protection against subsequent herbivore attack, but more research is needed to evaluate the costs and benefits of this phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据