4.7 Article

Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds

期刊

PHYTOCHEMISTRY
卷 70, 期 11-12, 页码 1392-1400

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2009.08.010

关键词

Arabidopsis thaliana; Knockout mutants; Flower buds; Polyamine conjugates; Phenylpropanoids; Metabolite profiling; Real-time PCR

资金

  1. Deutsche Forschungsgemeinschaft [VO 719/8-1]

向作者/读者索取更多资源

Phenylpropanoid polyamine conjugates have been identified in flowers of many plant species. Their presence in Arabidopsis thaliana has only been recently established in flower buds and pollen grains. Annotation and location of a cation-dependent O-methyltransferase AtTSM1 specifically to the tapetum of young flower buds enabled the subsequent identification of several genes with a putative role in phenylpropanoid polyamine conjugate biosynthesis. Based on the analysis of several A. thaliana knockout mutants, a biosynthetic pathway of these conjugates is proposed, which involves two methylation steps catalyzed by different cation-dependent O-methyltransferases, a cytochrome P450 (CYP98A8) catalyzed hydroxylation, and a conjugating acyl transfer performed by a BAHD-like, hydroxycinnamoyl (HC)-transferase. LC/MS based metabolite profiling of the cyp98A8 knockout line identified new feruloyl- and 4-coumaroylspermidine conjugates in the corresponding flowers consistent with a role of this gene in the hydroxylation of these conjugates. A pattern of minor amounts of bis- and tris-acylspermidine conjugates, likely the products of additional HC-transferases were identified in wild type as well as in the mutant lines. Transcript suppression of the genes early in the pathway was observed in knockout or RNAi-lines of the genes encoding late enzymatic steps. The implication of these findings for spermidine conjugate biosynthesis in flower buds of A. thaliana is discussed. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据