4.7 Review

Phosphinothricin-tripeptide biosynthesis: An original version of bacterial secondary metabolism?

期刊

PHYTOCHEMISTRY
卷 70, 期 15-16, 页码 1787-1800

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2009.09.002

关键词

Streptomyces viridochromogenes Tu494; Phosphinothricin-tripeptide; Non-ribosomal peptide synthetase; Aconitases; Evolution of secondary metabolism

资金

  1. Deutsche Forschungsgemeinschaft [SPP1152]

向作者/读者索取更多资源

Streptomyces viridochromogenes T6494 produces the herbicide phosphinothricyl-alanyl-alanine (phosphinothricin-tripeptide = PTT; bialaphos). Its bioactive moiety phosphinothricin competitively inhibits bacterial and plant glutamine synthetases. The biosynthesis of PTT includes the synthesis of the unusual amino acid N-acetyl-demethyl-phosphinothricin and a three step condensation via non-ribosomal peptide synthetases. Two characteristics within the PTT biosynthesis make it suitable to study the evolution of secondary metabolism biosynthesis. First, PTT biosynthesis represents the only known system where all peptide synthetase modules are located on separate proteins. This single enzyme system' might be an archetype of the multimodular and multienzymatic non-ribosomal peptide synthetases in evolutionary terms. The second interesting feature of PTT biosynthesis is the pathway-specific aconitase Pmi that is involved in the supply of N-acetyl-demethyl-phosphinothricin. Pmi is highly similar to the tricarboxylic acid aconitase AcnA. They share 64% identity at the DNA level and both belong to the Iron-Regulatory-Protein/AcnA family. Despite their high sequence similarity, AcnA and Pmi catalyze different reactions and are not able to substitute for each other. Thus, the enzyme pair AcnA/Pmi presents an example of the evolution of a secondary metabolite-specific enzyme from a primary metabolism enzyme. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据