4.5 Review

Dynamic Neural Control of Insect Muscle Metabolism Related to Motor Behavior

期刊

PHYSIOLOGY
卷 26, 期 4, 页码 293-303

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiol.00002.2011

关键词

-

向作者/读者索取更多资源

Skeletal muscle innervation differs between vertebrates and insects. Insect muscle fibers exhibit graded electrical potentials and are innervated by excitatory, inhibitory, and also neuromodulatory motoneurons. The latter form a unique class of unpaired neurons with bilaterally symmetrical axons that release octopamine to alter the efficacy of synaptic transmission and regulate muscle energy metabolism by activating glycolysis. Octopaminergic neurons that innervate muscles with a high energy demand, for example, flight muscles that move the wings of a locust up and down, are active during rest but are inhibited during flight and its preparatory phase, a jump. Therefore, it is argued that these neurons are involved in providing locusts with the necessary fuel at takeoff, but then may aid the switch to lipid oxidation during flight. In general, the octopaminergic system may switch the whole organism from a tonic to a dynamic state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据