4.5 Article

A subspace decomposition approach toward recognizing valid pulsatile signals

期刊

PHYSIOLOGICAL MEASUREMENT
卷 30, 期 11, 页码 1211-1225

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0967-3334/30/11/006

关键词

intracranial pressure; hemodynamic signal; pulsatile signal; singular value decomposition; noise and artifacts; intracranial pressure pulse reference library

资金

  1. NINDS [NS055998, NS055045, NS059797, NS054881, NS066008]

向作者/读者索取更多资源

Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for the prediction of critical intracranial and cerebrovascular pathophysiological variations during the management of many neurological disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is capable of enhancing the quality of ICP signals, recognizing valid (not contaminated with noise or artifacts) ICP pulses and designating the locations of the three ICP sub-peaks in a pulse. This paper extends the algorithm by proposing a singular value decomposition (SVD) technique to replace the correlation-based approach originally utilized in recognizing valid ICP pulses. The validation of the proposed method is conducted on a large database of ICP signals built from 700 h of recordings from 67 neurosurgical patients. A comparative analysis of the valid ICP recognition using the proposed SVD technique and the correlation-based method demonstrates a significant improvement in terms of (1) accuracy (61.96% reduction in the false positive rate while keeping the true positive rate as high as 99.08%) and (2) computational time (91.14% less time consumption), all in favor of the proposed method. Finally, this SVD-based valid pulse recognition can be potentially applied to process pulsatile signals other than ICP because no proprietary ICP features are incorporated in the algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据