4.5 Article

Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle

期刊

PHYSIOLOGICAL GENOMICS
卷 34, 期 3, 页码 327-337

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.90211.2008

关键词

transcription factor; DNA binding motif; promoter; adenovirus; skeletal muscle; human

资金

  1. French National Program of Research on Diabetes

向作者/读者索取更多资源

Rome S, Lecomte V, Meugnier E, Rieusset J, Debard C, Euthine V, Vidal H, Lefai E. Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34: 327, 2008. First published June 17, 2008; doi: 10.1152/physiolgenomics.90211.2008.-In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes in the expression of 1,315 genes (655 upregulated and 660 downregulated), whereas overexpression of SREBP-1c modified the mRNA level of 514 genes (310 upregulated and 204 downregulated). Gene ontology analysis indicated that in human muscle cells SREBP-1a and -1c are involved in the regulation of a large number of genes that are at the crossroads of different functional pathways, several of which are not directly connected with cholesterol and lipid metabolism. Six hundred fifty-two of all genes identified to be differentially regulated on SREBP overexpression had a sterol regulatory element (SRE) motif in their promoter sequences. Among these, 429 were specifically regulated by SREBP-1a, 69 by SREBP-1c, and 154 by both 1a and 1c. Because both isoforms recognize the same binding motif, we determined whether some of these functional differences could depend on the environment of the SRE motifs in the promoters. Results from promoter analysis showed that different combinations of transcription factor binding sites around the SRE binding motifs may determine regulatory networks of transcription that could explain the superposition of lipid and cholesterol metabolism with various other pathways involved in adaptive responses to stress like hypoxia and heat shock, or involvement in the immune response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据