4.5 Article

454 pyrosequencing-based characterization of the bacterial consortia in a well established nitrifying reactor

期刊

WATER SCIENCE AND TECHNOLOGY
卷 72, 期 6, 页码 990-997

出版社

IWA PUBLISHING
DOI: 10.2166/wst.2015.295

关键词

16S rRNA gene sequencing; heterotrophs; nitrifying reactor; Nitrosomonas; Nitrobacter

资金

  1. Cinvestav (Mexico)
  2. ABACUS 'Consejo Nacional de Ciencia y Tecnologia, Mexico' (CONACyT)
  3. CONACyT

向作者/读者索取更多资源

This present study aimed to characterize the bacterial community in a well-established nitrifying reactor by high-throughput sequencing of 16S rRNA amplicons. The laboratory-scale continuous stirred tank reactor has been supplied with ammonium (NH4+) as sole energy source for over 5 years, while no organic carbon has been added, assembling thus a unique planktonic community with a mean NH4+ removal rate of 86 +/- 1.4 mg NH4+-N/(L d). Results showed a nitrifying community composed of bacteria belonging to Nitrosomonas (relative abundance 11.0%) as the sole ammonia oxidizers (AOB) and Nitrobacter (9.3%) as the sole nitrite oxidizers (NOB). The Alphaproteobacteria (42.3% including Nitrobacter) were the most abundant class within the Proteobacteria (62.8%) followed by the Gammaproteobacteria (9.4%). However, the Betaproteobacteria (excluding AOB) contributed only 0.08%, confirming that Alpha-and Gammaproteobacteria thrived in low-organic-load environments while heterotrophic Betaproteobacteria are not well adapted to these conditions. Bacteroidetes, known to metabolize extracellular polymeric substances produced by nitrifying bacteria and secondary metabolites of the decayed biomass, was the second most abundant phylum (30.8%). It was found that Nitrosomonas and Nitrobacter sustained a broad population of heterotrophs in the reactor dominated by Alpha- and Gammaproteobacteria and Bacteroidetes, in a 1:4 ratio of total nitrifiers to all heterotrophs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据