4.2 Article

Individual variation in migration speed of upriver-migrating sockeye salmon in the Fraser River in relation to their physiological and energetic status at marine approach

期刊

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
卷 81, 期 3, 页码 255-268

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/529460

关键词

-

向作者/读者索取更多资源

Little research has examined individual variation in migration speeds of Pacific salmon (Oncorhynchus spp.) in natural river systems or attempted to link migratory behavior with physiological and energetic status on a large spatial scale in the wild. As a model, we used three stocks of summer-run sockeye salmon (Oncorhynchus nerka) from the Fraser River watershed, British Columbia, to test the hypothesis that individual variation in migration speed is determined by a combination of environmental factors (i.e., water temperature), intrinsic biological differences (sex and population), and physiological and energetic condition. Before the freshwater portion of the migration, sockeye salmon (Quesnel, Chilcotin, and Nechako stock complexes) were captured in Johnstone Strait (similar to 215 km from river entry), gastrically implanted with radio transmitters, and sampled for blood, gill tissue, and energetic status before release. Analyses focused solely on individuals that successfully reached natal subwatersheds. Migration speeds were assessed by an extensive radiotelemetry array. Individuals from the stock complex that migrated the longest distance (Nechako) traveled at speeds slower than those of other stock complexes. Females traveled slower than males. An elevated energetic status of fish in the ocean was negatively correlated with migration speed in most river segments. During the transition from the ocean to the river, migration speed was negatively correlated with mean maximum water temperature; however, for the majority of river segments, it was positively correlated with migration speed. Physiological status measured in the ocean did not explain among-individual variability in river migration speeds. Collectively, these findings suggest that there could be extensive variation in migration behavior among individuals, sexes, and populations and that physiological condition in the ocean explained little of this variation relative to in-river environmental conditions and energetic status. Interestingly, individual fish generally retained their rank in swimming speed across different segments, except when transiting a challenging canyon midway during the migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据