4.7 Article

Interactions between drought, ABA application and supplemental UV-B in Populus yunnanensis

期刊

PHYSIOLOGIA PLANTARUM
卷 134, 期 2, 页码 257-269

出版社

WILEY
DOI: 10.1111/j.1399-3054.2008.01128.x

关键词

-

资金

  1. National Science Foundation of China [30525036]
  2. Chinese Academy of Sciences [KSCX2-YW-N-064]

向作者/读者索取更多资源

To test whether drought and ABA application alter the effects of enhanced UV-B on the growth and biomass allocation of Populus yunnanensis Dode, cuttings were grown in pots at two ABA levels, two watering regimes and two UV-B levels for one growth season. Exposure to enhanced UV-B radiation significantly decreased plant growth and photosynthesis under well-watered conditions, but these effects were obscured by drought, which alone caused growth reduction. Drought may contribute to masking the effects of UV-B radiation. The accumulation of UV-B absorbing compounds and the increase of the ABA content induced by drought could reduce the effectiveness of UV-B radiation. ABA application did not have large direct effects on biomass accumulation and allocation. Evidence for interactions between UV-B and ABA was detected for only a few measured traits. Therefore, there was little evidence to support a pivotal role for ABA in regulating a centralized whole plant response to enhanced UV-B. Yet, we recorded an ABA-induced decrease in stomatal conductance (g(s)) and increase in UV-B absorbing compounds and carbon isotope composition (delta C-13) in response to enhanced UV-B. The allometric analysis revealed that regression models between root and shoot biomass in response to enhanced UV-B are different for plants under well-watered and drought conditions. Enhanced UV-B led to a significant displacement of the allometric regression line under well-watered condition, while allometric trajectories for both UV-B regimes did not differ significantly under drought condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据