4.7 Review

NTRC new ways of using NADPH in the chloroplast

期刊

PHYSIOLOGIA PLANTARUM
卷 133, 期 3, 页码 516-524

出版社

WILEY
DOI: 10.1111/j.1399-3054.2008.01088.x

关键词

-

向作者/读者索取更多资源

Despite being the primary source of energy in the biosphere, photosynthesis is a process that inevitably produces reactive oxygen species. Chloroplasts are a major source of hydrogen peroxide production in plant cells; therefore, different systems for peroxide reduction, such as ascorbate peroxidase and peroxiredoxins (Prxs), are found in this organelle. Most of the reducing power required for hydrogen peroxide reduction by these systems is provided by Fd reduced by the photosynthetic electron transport chain; hence, the function of these systems is highly dependent on light. Recently, it was described a novel plastidial enzyme, stated NTRC, formed by a thioredoxin reductase (NTR) domain at the N-terminus and a thioredoxin (Trx) domain at the C-terminus. NTRC is able to conjugate both NTR and Trx activities to efficiently reduce 2-Cys Prx using NADPH as a source of reducing power. Based on these results, it was proposed that NTRC is a new pathway to transfer reducing power to the chloroplast detoxification system, allowing the use of NADPH, besides reduced Fd, for such function. In this article, the most important features of NTRC are summarized and the implications of this novel activity in the context of chloroplast protection against oxidative damage are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据