4.7 Article

Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimoes-Amazon and Negro Rivers junction

期刊

WATER RESOURCES RESEARCH
卷 51, 期 8, 页码 6197-6213

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014WR016757

关键词

-

资金

  1. University of Texas at Austin Graduate Continuing Fellowship
  2. NSF FESD [EAR-1338694]

向作者/读者索取更多资源

Large river channel confluences are recognized as critical fluvial features because both intensive and extensive hydrophysical and geoecological processes take place at this interface. However, identifications of suspended sediment routing patterns through channel junctions and the roles of tributaries on downstream sediment transport in large rivers are still poorly explored. In this paper, we propose a remote sensing-based approach to characterize the spatiotemporal patterns of the postconfluence suspended sediment transport by mapping the surface water distribution in the ultimate example of large river confluence on Earth where distinct water types meet: The Solimoes-Amazon (white water) and Negro (black water) rivers. The surface water types distribution was modeled for three different years: average hydrological condition (2007) and 2 years when extreme events occurred (drought-2005 and flood-2009). Amazonian surface water domination along the main channel is highest during the water discharge rising season. Surface water mixing along the main channel depends on the hydrological seasons with the highest mixed-homogenized area observed during water discharge peak season and the lowest during discharge rising season. Water mixture also depends on the yearly hydrological regime with the highest rates of water mixing in 2009, followed by 2005 and 2007. We conclude that the dominant mixing patterns observed in this study have been persistent over a decadal scale and the anabranching patterns contribute to avoid a faster mixing in a shorter distance. Our proposed approach can be applied to a variety of morphodynamic and environmental analyses in confluences of large rivers around the world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据