4.7 Article

On the limits of heat as a tracer to estimate reach-scale river-aquifer exchange flux

期刊

WATER RESOURCES RESEARCH
卷 51, 期 9, 页码 7401-7416

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014WR016741

关键词

heat as a tracer; reach-scale groundwater discharge; river temperature modeling; surface water groundwater interaction

资金

  1. National Centre for Groundwater Research and Training, an Australian government initiative - Australian Research Council
  2. National Water Commission
  3. National Natural Science Foundation of China [91225301]

向作者/读者索取更多资源

For the past few decades, heat has been used to estimate river-aquifer exchange flux at discrete locations by comparison of river and groundwater temperature. In recent years, heat has also been employed to estimate reach-scale river-aquifer exchange flux based only on river temperature. However, there are many more parameters that govern heat exchange and transport in surface water than in groundwater. In this study, we analyzed the sensitivities of surface water temperature to various parameters and assessed the accuracy of temperature-based estimates of exchange flux in two synthetic rivers and in a field setting. For the large synthetic river with a flow rate of 63 m(3) s(-1) (i.e., 5.44 x 10(6) m(3) d(-1)), the upper and lower bounds of the groundwater inflow rate can be determined when the actual groundwater inflow is around 100 m(2) d(-1). For higher and lower fluxes, only minimum and maximum bounds, respectively, can be determined. For the small synthetic river with the flow rate of 0.63 m(3) s(-1) (i.e., 5.44 x 10(4) m(3) d(-1)), the bounds of the groundwater inflow rate can only be estimated when the actual groundwater inflow rate is near 10 m(2) d(-1). In the field setting, results show that the inflow rate must be less than 100 m(2) d(-1), but a lower bound for groundwater inflow cannot be determined. The large ranges of estimated groundwater inflow rates in both theoretical and field settings indicate the need to reduce parameter errors and combine heat measurements with other isotopic and/or chemical methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据