4.7 Article

Climate and agricultural land use change impacts on streamflow in the upper midwestern United States

期刊

WATER RESOURCES RESEARCH
卷 51, 期 7, 页码 5301-5317

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR017323

关键词

streamflow; precipitation; tile drainage; evapotranspiration; row crops; prairies

资金

  1. Minnesota Corn Research and Promotion Council
  2. Minnesota Soybean Research and Promotion Council

向作者/读者索取更多资源

Increased streamflow and its associated impacts on water quality have frequently been linked to changes in land use and land cover (LULC) such as tile drainage, cultivation of prairies, and increased adoption of soybeans (Glycine max) in modern day cropping systems. This study evaluated the relative importance of changes in precipitation and LULC on streamflow in 29 Hydrologic Unit Code 008 watersheds in the upper midwestern United States. The evaluation was done by statistically testing the changes in slope and intercept of the relationships between ln(annual streamflow) versus annual precipitation for the periods prior to 1975 (prechange period) and after 1976 (postchange period). A significant shift either in slope or intercept of these relationships was assumed to be an indication of LULC changes whereas a lack of significant shift suggested a single relationship driven by precipitation. All 29 watersheds showed no statistical difference in slope or intercept of the relationships between the two periods. However, a simpler model that kept the slope constant for the two periods showed a slight upward shift in the intercept value for 10 watersheds in the postchange period. A comparison of 5 year moving averages also revealed that the increased streamflows in the postchange period are mainly due to an increase in precipitation. Minimal or the lack of LULC change impact on streamflow results from comparable evapotranspiration in the two time periods. We also show how incorrect assumptions in previously published studies minimized precipitation change impacts and heightened the LULC change impacts on streamflows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据