4.7 Article

Flow resistance in natural, turbulent channel flows: The need for a fluvial fluid mechanics

期刊

WATER RESOURCES RESEARCH
卷 51, 期 6, 页码 4374-4390

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR016989

关键词

-

向作者/读者索取更多资源

In fluvial environments, feedbacks among flow, bed forms, sediment, and macrophytes result in a complex fluid dynamics. The assumptions underpinning standard tools in hydraulics are commonly violated and alternative approaches must be formulated. I argue that we should question the assumption that classical notions in fluid mechanics provide the foundations for the techniques of the future. Recent work on turbulent dissipation, interscale modulation of the dynamics, intermittency, and the role of complex forcings is discussed. An agenda for future work is proposed that involves improving our characterization of complex forcings and developing better understanding of the behavior of the velocity gradient tensor in complex, fluvial environments. This leads to the formulation of modeling tools relevant to fluvial fluid mechanics, rather than a reliance on methods developed elsewhere. One avenue by which such methods might be developed is suggested based on the stretched spiral vortex as a baseline topology. This would result in a nonequilibrium model for turbulence that has greater potential to capture the dynamics in which we are interested. Although these ideas are raised in the context of a future fluvial fluid mechanics, they are applicable to any situation where turbulent flows are forced in complicated ways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据