4.7 Review

Fractional motions

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physrep.2013.01.004

关键词

Brownian motion; Fractional Brownian motion; Levy motion; Fractional Levy motion; Langevin's equation; Random walks; Scaling limits; Universality; Noah exponent; Noah effect; Joseph exponent; Joseph effect; Sub-diffusion; Super-diffusion; Short-range correlations; Long-range correlations; Fractal trajectories; Selfsimilarity; Hurst exponent

向作者/读者索取更多资源

Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the Noah effect), nor long-range correlations (the Joseph effect). The quintessential model for processes displaying the Noah effect is Levy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Levy motion. In this paper we review these four random-motion models - henceforth termed fractional motions - via a unified physical setting that is based on Langevin's equation, the Einstein-Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts according to microscopic-level details - which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents a Noah exponent governing their fluctuations, and a Joseph exponent governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据