4.8 Article

Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics

期刊

WATER RESEARCH
卷 86, 期 -, 页码 25-34

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2015.05.032

关键词

Organic matter characteristics; pH; Pharmaceuticals; Photocatalytic oxidation; Substrate-immobilized TiO2 nanofibers

资金

  1. Korea Institute of Science and Technology (KIST) [2E25312]
  2. KIST-UNIST partnership program [2.140442.01]

向作者/读者索取更多资源

A substrate-immobilized (SI) TiO2 nanofiber (NF) photocatalyst for multiple uses was prepared through electrospinning and hot pressing. The rate of furfuryl alcohol degradation under UV irradiation was found to be the highest when the anatase to rutile ratio was 70:30; the rate did not linearly increase as a function of the NF film thickness, mainly due to diffusion limitation. Even after eight repeated cycles, it showed only a marginal reduction in the photocatalytic activity for the degradation of cimetidine. The effects of pH and different organic matter characteristics on the photodegradation of cimetidine (CMT), propranolol (PRP), and carbamazepine (CBZ) were investigated. The pH-dependence of the photocatalytic degradation rates of PRP was explained by electrostatic interactions between the selected compounds and the surface of TiO2 NFs. The degradation rates of CMT showed the following order: deionized water > L-tyrosine > secondary wastewater effluent (effluent organic matter) > Suwannee River natural organic matter, demonstrating that the characteristics of the dissolved organic matter (DOM) can affect the photodegradation of CMT. Photodegradation of CBZ was affected by the presence of DOM, and no significant change was observed between different DOM characteristics. These findings suggest that the removal of CMT, PRP, and CBZ during photocatalytic oxidation using SI TiO2 NFs is affected by the presence of DOM and/or pH, which should be importantly considered for practical applications. (c) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据