4.8 Article

Transformation of methadone and its main human metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), during water chlorination

期刊

WATER RESEARCH
卷 68, 期 -, 页码 759-770

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2014.10.058

关键词

Methadone; 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP); Chlorination; Transformation products; Environmental fate; Liquid chromatography-time-of-flight-mass spectrometry

资金

  1. Spanish Ministry of Economy and Competitiveness [CTQ2010-18927, CTQ2012-33080]
  2. Galician Council of Culture, Education and Universities [EM 2012/055]
  3. Galician Council of Culture, Education and Universities

向作者/读者索取更多资源

The reaction kinetics and reaction pathway of methadone and its main human metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in chlorine containing waters were investigated by direct injection of individual reaction time aliquots in a liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS) system. Factors potentially affecting the rate of the reaction were evaluated in detail by means of a Box-Behnken experimental design in which methadone and EDDP were considered separately. Sample pH and chlorine concentration turned out to be the two significant variables, enhancing the kinetics with an increase in their values. Transformation products (TPs) were first searched over sample chromatograms by comparing control, blank and time zero samples to aliquots stopped at different reaction times. Their tentative identity was further inferred by generating their empirical formulae from their accurate single MS spectra and, subsequently, by interpreting their fragmentation pattern from their tandem MS (MS/MS) spectra. In total, 8 TPs, arising from intra-molecular cyclation, dehydrogenation, oxidation and chlorination, could be detected in the case of methadone, one of them being the EDDP and another 3 coming from EDDP, so being common to both the precursor drug and its metabolite. A tentative transformation pathway was proposed, and the reaction was evaluated under potential real circumstances by chlorinating two different river samples. In this way, it was possible to demonstrate that its extension is highly affected by the content of dissolved organic matter, so both compounds were highly or completely transformed in samples with a low anthropogenic impact, whereas they were considerably more stable in waters with a high concentration of organic matter. Finally, the ecotoxicity of precursors and transformation species was predicted by software tools, revealing that, in some cases, the toxicological responses displayed by the TPs were up to 100 times higher than those of methadone. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据