4.4 Article

Momentum transfer of solar wind plasma in a kinetic scale magnetosphere

期刊

PHYSICS OF PLASMAS
卷 19, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3683560

关键词

-

资金

  1. CREST (JST)
  2. Grants-in-Aid for Scientific Research [23340148] Funding Source: KAKEN

向作者/读者索取更多资源

Solar wind interaction with a kinetic scale magnetosphere and the resulting momentum transfer process are investigated by 2.5-dimensional full kinetic particle-in-cell simulations. The spatial scale of the considered magnetosphere is less than or comparable to the ion inertial length and is relevant for magnetized asteroids or spacecraft with mini-magnetosphere plasma propulsion. Momentum transfer is evaluated by studying the Lorentz force between solar wind plasma and a hypothetical coil current density that creates the magnetosphere. In the zero interplanetary magnetic field (IMF) limit, solar wind interaction goes into a steady state with constant Lorentz force. The dominant Lorentz force acting on the coil current density is applied by the thin electron current layer at the wind-filled front of the magnetosphere. Dynamic pressure of the solar wind balances the magnetic pressure in this region via electrostatic deceleration of ions. The resulting Lorentz force is characterized as a function of the scale of magnetosphere normalized by the electron gyration radius, which determines the local structure of the current layer. For the finite northward IMF case, solar wind electrons flow into the magnetosphere through the reconnecting region. The inner electrons enhance the ion deceleration, and this results in temporal increment of the Lorentz force. It is concluded that the momentum transfer of solar wind plasma could take place actively with variety of kinetic plasma phenomena, even in a magnetosphere with a small scale of less than the ion inertial length. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3683560]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据