4.4 Article

Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability

期刊

PHYSICS OF PLASMAS
卷 17, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3497006

关键词

-

资金

  1. National Basic Research Program of China [2007CB815103]
  2. National Natural Science Foundation of China [10935003, 10775020, 11075024]

向作者/读者索取更多资源

The nonlinear evolutions of the Rayleigh-Taylor instability (RTI) with preheat is investigated by numerical simulation (NS). A new phase of the spike deceleration evolution in the nonlinear ablative RTI (ARTI) is discovered. It is found that nonlinear evolution of the RTI can be divided into the weakly nonlinear regime (WNR) and the highly nonlinear regime (HNR) according to the difference of acceleration velocities for the spike and the bubble. With respect to the classical RTI (i.e., without heat conduction), the bubble first accelerates in the WNR and then decelerates in the HNR while the spike holds acceleration in the whole nonlinear regime (NR). With regard to the ARTI, on the contrary, the spike first accelerates in the WNR and then decelerates in the HNR while the bubble keeps acceleration in the whole NR. The NS results indicate that it is the nonlinear overpressure effect at the spike tip and the vorticity accumulation inside the bubble that lead to, respectively, the spike deceleration and bubble acceleration, in the nonlinear ARTI. In addition, it is found that in the ARTI the spike saturation velocity increases with the perturbation wavelength. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3497006]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据